翻訳と辞書
Words near each other
・ Schruns
・ Schräge Musik
・ Schröck
・ Schröcken
・ Schröckingerite
・ Schröder
・ Schröder AS-140 Mücke
・ Schröder family
・ Schröder number
・ Schröder Professor of German
・ Schröder's equation
・ Schröder, Münchmeyer, Hengst & Co.
・ Schröder–Bernstein property
・ Schröder–Bernstein theorem
・ Schröder–Bernstein theorem for measurable spaces
Schröder–Bernstein theorems for operator algebras
・ Schröder–Hipparchus number
・ Schrödinger (company)
・ Schrödinger (crater)
・ Schrödinger (disambiguation)
・ Schrödinger equation
・ Schrödinger field
・ Schrödinger functional
・ Schrödinger group
・ Schrödinger Medal
・ Schrödinger method
・ Schrödinger picture
・ Schrödinger's cat
・ Schrödinger's cat in popular culture
・ Schrödinger's Cat Trilogy


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schröder–Bernstein theorems for operator algebras : ウィキペディア英語版
Schröder–Bernstein theorems for operator algebras
The Schröder–Bernstein theorem from set theory has analogs in the context operator algebras. This article discusses such operator-algebraic results.
== For von Neumann algebras ==
Suppose M is a von Neumann algebra and ''E'', ''F'' are projections in M. Let ~ denote the Murray-von Neumann equivalence relation on M. Define a partial order « on the family of projections by ''E'' « ''F'' if ''E'' ~ ''F' '' ≤ ''F''. In other words, ''E'' « ''F'' if there exists a partial isometry ''U'' ∈ M such that ''U
*U'' = ''E'' and ''UU
*'' ≤ ''F''.
For closed subspaces ''M'' and ''N'' where projections ''PM'' and ''PN'', onto ''M'' and ''N'' respectively, are elements of M, ''M'' « ''N'' if ''PM'' « ''PN''.
The Schröder–Bernstein theorem states that if ''M'' « ''N'' and ''N'' « ''M'', then ''M'' ~ ''N''.
A proof, one that is similar to a set-theoretic argument, can be sketched as follows. Colloquially, ''N'' « ''M'' means that ''N'' can be isometrically embedded in ''M''. So
:M = M_0 \supset N_0
where ''N''0 is an isometric copy of ''N'' in ''M''. By assumption, it is also true that, ''N'', therefore ''N''0, contains an isometric copy ''M''1 of ''M''. Therefore one can write
:M = M_0 \supset N_0 \supset M_1.
By induction,
:M = M_0 \supset N_0 \supset M_1 \supset N_1 \supset M_2 \supset N_2 \supset \cdots .
It is clear that
:R = \cap_ M_i = \cap_ N_i.
Let
:M \ominus N \stackrel M \cap (N)^.
So
:
M = \oplus_ ( M_i \ominus N_i ) \quad \oplus \quad \oplus_ ( N_j \ominus M_) \quad \oplus R

and
:
N_0 = \oplus_ ( M_i \ominus N_i ) \quad \oplus \quad \oplus_ ( N_j \ominus M_) \quad \oplus R.

Notice
:M_i \ominus N_i \sim M \ominus N \quad \mbox \quad i.
The theorem now follows from the countable additivity of ~.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schröder–Bernstein theorems for operator algebras」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.